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Molecular symmetry has a pronounced effect on the melting properties and solubility of organic compounds. As a general 
rule, symmetrical molecules in crystalline form have higher melting temperatures and exhibit lower solubilities compared 
with molecules of similar structure but with lower symmetry. Symmetry in a molecule imparts a positive amount of 
residual entropy in the solid phase (i.e., more possible arrangements leading to the same structure). This means that 
the entropy of a crystal of symmetric molecules is greater than the entropy of crystal of a similar, but non-symmetric 
molecule. An analysis is presented relating the enthalpy, entropy and temperature of melting for an idealised system of 
structural isomers of different molecular symmetries. The analysis presented helps explain why often, yet not always, 
the crystal of a more symmetric molecule, which has greater entropy to start (closer to that of the liquid), also exhibits 
a greater gain in entropy upon melting, compared with the crystal of a less symmetrical molecule. The residual entropy 
due to molecular symmetry has the direct effect of reducing the entropy gain upon melting (a negative effect). However, 
molecular symmetry also exerts indirect effects on both the entropy and enthalpy of melting. These indirect effects, 
imposed by the condition of equilibrium melting, are positive, such that it is the balance between the direct and indirect 
effects what determines the value observed for the entropy of melting of the symmetric molecules. When the indirect effect 
of molecular symmetry is greater than its direct effect, the observed entropy gain upon melting of the more symmetrical 
molecule is greater than that of a less symmetrical one.

Chemists know that molecular symmetry has a pronounced effect 
on the melting temperature and solubility of organic compounds.1 
As a general rule (Brown and Brown2 have proposed calling it 
Carnelley’s rule), crystals of symmetrical molecules have higher 
melting temperatures and are less soluble than the crystals of less 
symmetrical molecules with similar structures.1,2 The relationship 
between melting temperature and solubility has been established, 
in a definite way, by Yalkowsky and Valvani.3 In fact, symmetrical 
molecules are less soluble precisely because of the higher melting 
temperature of their crystals.4 The intimate connection is thus 
between molecular symmetry and melting temperature. Melting 
temperature is a peculiar property of materials; it is in many 
respects a bulk property, but has the special characteristic of 
strongly reflecting the rather subtle molecular feature of symmetry.5 
Gavezzotti1 concluded that the effect of molecular symmetry on 
melting is a true solid state effect, and that the few exceptions 
to the general rule of symmetrical molecules exhibiting higher 
melting temperature, can be explained. Among the exceptions 
to the general rule is the fact that ortho- disubstituted benzene 
derivatives in some instances have higher melting temperature than 
the more symmetrical para- isomers. In addition, despite the fact 
that ortho- and meta- isomers have the same symmetry, it is also 
common for ortho- isomers to have higher melting temperature 
than their meta- counterparts. The type of molecular arrangements 
that ortho-disubstituted benzenes can adopt in the crystal phase has 
been discussed to explain their higher melting temperature over 
their para or meta counterparts.1 Exceptions to the above mentioned 
general rule are also encountered for some, but not all, hydrogen 
bonding compounds. In this case, the structure-defining character 
of hydrogen bonding is certainly capable of overriding subtler shape 
effects such as symmetry.1

A simple explanation for a high melting temperature is often 
given in terms of the relationship between the enthalpy (Hm), 
entropy (Sm) and temperature (Tm) of melting. Since high values 
of Tm are favoured by high values of Hm and low values of Sm.6

                                           T
H

Sm
m

m

=
∆
∆

                                      (1)

A high enthalpy of melting implies large bonding energies,6 and 
molecular symmetry may contribute to stronger crystal packing via 
shape-cohesion effects.1 The effect of molecular symmetry on the 
entropy of melting is quantifiably more direct. Yalkowsky et al.7 
and Dannenfelser and Yalkowsky8 have accounted for the effect 
of molecular symmetry on the entropy of melting by including the 
symmetry number (). In the solid phase, the symmetry of a mol-
ecule results in a residual amount of molar entropy of magnitude 
R ln  above that of a similar but non-symmetrical molecule. Con-
sequently, the difference in entropy between the liquid and solid 
phases will be smaller for the more symmetrical molecule. This in 
turn means that symmetry in a molecule has the effect of reducing 
the entropy gained upon melting for that compound (Sm). Either 
of the two effects listed above, not to mention a combination of the 
two, would result in a higher melting temperature for a symmetrical 
molecule over a non-symmetrical one.

The great intuitive appeal of the explanation given above comes 
from the fact that its conceptual and numerical arguments are not 
only valid, but entirely consistent. However, the same account 
fails to explain a very common observation, namely, the fact that 
symmetrical molecules, which as a general rule do have higher 
melting temperatures, quite often have also greater entropies of 
melting than their less symmetrical isomers. Table 1 gives a list of 
pairs of structural isomers with different molecular symmetry. In all 
examples listed, the more symmetrical isomer has the higher melting 
temperature. However, in all cases too, the higher melting isomer 
has also the higher entropy of melting. It should be pointed out that 
a more symmetrical isomer exhibiting both higher temperature and 
entropy of melting is not at all an uncommon occurrence, as exem-
plified in Table 1. Given that the explanation for a higher melting 
temperature given after eqn. (1) is a valid one, it becomes clear that, 
in addition to the term R ln , another factor of common occurrence 
must be part of the interplay between molecular symmetry and the 
observed entropy of melting. The validity of eqn. (1) also means that 
in every case in which the more symmetrical isomer exhibits both 
a higher temperature and a higher entropy of melting, its enthalpy 
of melting must also be greater than that of the less symmetrical 
isomer. It follows that the effect of molecular symmetry on melting 
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should be expected to have explicit components on both the entropy 
and enthalpy of melting. An analysis of the effect of molecular sym-
metry on the corresponding melting parameters is presented in the 
following section. The system chosen for such analysis involves a 
set of idealised isomers of different molecular symmetry, such that 
the difference in their symmetry is the main variable responsible 
for the observable differences between the melting properties of 
the two isomers.

Effect of molecular symmetry

Consider the hypothetical case of two isomeric molecules, 1 and 
2. The two molecular species make up a system that will be here 
referred to as ideal isomers, such that the only difference between 
the two is their symmetry. The symmetry number , will be used 
as symmetry descriptor in the present discussion. The symmetry 
number used here is the same as that used by Yalkowsky et al.7 
for estimating the entropy of melting. The symmetry number of a 
molecule is the number of indistinguishable positions in space that 
a molecule can have by rigid rotations. This is also the number used 
in the calculation of the rotational partition function.13 The benzene 
molecule for example, which belongs to symmetry group D6h, has 
 = 12. This means that a molecule of benzene can be rotated to give 
12 undistinguishable orientations: it can be rotated by 60° six times, 
either clockwise or counterclockwise, giving six indistinguishable 
orientations. Since the molecule is flat, six more indistinguishable 
orientations are obtained by repeating the above operation after 
flipping the molecule such that its back side faces front.

Consider that the molecules of the two ideal isomers in question 
are similar enough in all other respects such that their bulk 
properties, as would be the case for the heat capacities of their 
corresponding crystal and liquid states are very nearly the same. In 
this idealised case, the heat capacities of solids 1 and 2 are nearly 
equal, as well as the heat capacities of the two corresponding 
liquids. The two molecules can be expected to have different 
melting temperatures but similar boiling points,5,7 thus:

                                               1 ≠ 2                                        (2a)

                                         Cp
s
1 ≈ Cp

s
2 = Cps                                  (2b)

                                        Cp
L
1 ≈ Cp

L
2 = CpL                                 (2c)

where Cp is the heat capacity, the subscripts 1 and 2 denote mole-
cular species 1 and 2, respectively, and the superscripts s and 
L, denote solid and liquid phase, respectively. For purposes of 
simplicity, consider that 2 > 1 and  = 1. The particular choice 
of  values does not alter the results but greatly simplifies the 
presentation.

The symmetry of a molecule gives it  indistinguishable posi-
tions; the same statement can be made in terms of the residual 
entropy, Sr, that symmetry confers to the molecule, so that for one 
mole:7,8

                                            Sr = R ln                                        (3)

where R is the gas constant. Thus, for two molecules of different 
symmetry, the more symmetric one will have an amount of residual 
molar entropy, relative to the less symmetric molecule, of the 
following magnitude:

                                        S Rr =










ln
σ
σ

2

1

                                   (4)

For the system under consideration here, since 1 = 1, molecular 
species 1 will carry zero residual entropy, whereas molecular 
species 2 will carry an amount of residual entropy, Sr = R ln 2. 
This residual entropy, being purely configurational, is independent 
of temperature, and should persist as absolute zero is approached, 
such that the entropies of the two solids are related by:

                                   S s2(T) = S s1(T) + R ln 2                              (5)Ta
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term, R ln , has both a direct and an indirect effect on the magni-
tude of the entropy of melting. Another characteristic of the type of 
system considered here is that the enthalpy and entropy of melting 
at T2(2) cannot be arbitrarily independent of the corresponding 
quantities at T1(1).

First consider that for the liquid of species 1 at T1:

                                  H  L(T1) = H  s1(T1) + Hm1                             (8)

where H denotes enthalpy and Hm1 is the enthalpy change upon 
melting for species 1, and the super- and sub- scripts are the same 
as above. In a similar fashion we have that for the entropy of species 
1 at T1:

                                   S L(T1) = S s1(T1) + Sm1                              (9)

where S denotes entropy and Sm1 is the entropy of melting of 
species 1. For the solid of species 2 at T2 we have: 

                            H T H T C Tp
T

T

2 2 1 1
1

2
s s sd( ) ( )= +∫                      (10)

where the first term on the right hand side is the result of applying 
eqn. (2b), i.e., it corresponds to the third law enthalpy. It should be 
pointed out that in addition to eqn. (2b), eqn. (10) also bears the 
implicit assumption that the zero point energy of ideal isomers is 
the same, thus making H  s2(T) = H  s1(T), which corresponds to the 
enthalpy counterpart of eqn. (5). Further discussion on the use of 
third law enthalpies and entropies will be provided later.

In an analogous manner, we have that for the entropy of the solid 
of species 2 at T2:

                      S T S T R
C

T
Tp

T

T

2 2 1 1 2
1

2
s s

s

d( ) ( ) ln= + +∫σ               (11)

Making use of eqn. (8), we have that for the enthalpy of the liquid 
at T2: 

                      H T H T H C Tp
T

T
L s

m
Ld( ) ( )2 1 1 1

1

2

= + +∫∆               (12)

and applying eqn. (9) we have that for the entropy of the liquid:

                      S T S T S
C

T
Tp

T

T
L s

m

L

d( ) ( )2 1 1 1
1

2

= + +∫∆                (13)

We are interested in finding the magnitude of the enthalpy and 
entropy of melting of the (more) symmetrical species, Hm2 and 
Sm2, measured at T2, in relation to the corresponding quantities 
Hm1 and Sm1, measured at T1, for the less symmetrical isomer. 
Subtracting eqn. (10) from eqn. (12) we get:

                             ∆ ∆ ∆H H C Tp
T

T

m m d2 1
1

2

= +∫                      (14)

where the term Cp = Cp
L − Cp

s corresponds to the difference in heat 
capacity between the liquid and solid phases. In order to find the 
entropy of melting for the (more) symmetrical molecular species, 
we subtract eqn. (11) from eqn. (13) and obtain:

                     ∆ ∆
∆

S S R
C

T
Tp

T

T

m2 m1 d= − +∫lnσ2
1

2

             (15)

Eqns. (14) and (15) show the quantitative effect of molecular 
symmetry on the enthalpy and entropy of melting, respectively. 
Note that in cases where the molecular species under consideration 
have both symmetry numbers greater than unity, eqn. (15) still 
applies. In such cases, the second term on the right hand side of 
eqn. (15) would originate from eqn. (4).

It is also pertinent to point out that any effect of the residual entropy 
of species 2 is entirely consistent with the assumptions formulated 
as eqns. (2a) and (2b). Since the term R ln 2 is constant, it will 
have a direct effect on both the magnitude and slope, but not on 
the curvature (i.e., on Cp

s
2), of the free energy of species 2, as a 

function of temperature. Fig. 1 provides a graphical representation 
of the effect that the residual entropy has on the Gibbs free energy 
(G) of molecular species 1 and 2 in the solid state in relation to that 
of the liquid. The points T1 and T2 in the figure correspond to the 
melting temperatures of isomers 1 and 2, respectively. These are 
the two temperature values, one for each isomer, at which solid and 
liquid have the same free energy. At any given temperature T, the 
more symmetrical species 2 will have a negative excess (a deficit) 
in molar free energy equal to −RT ln 2, relative to species 1. This 
deficit in free energy becomes zero at absolute zero and increases 
linearly with temperature, such that when species 1 melts at T1, the 
crystal of species 2 has a free energy that is precisely RT1ln  lower 
than that of the liquid. This means that at T1, the solid of species 2 is 
still thermodynamically more stable than the liquid. Consequently, 
species 2 will not melt until a higher temperature, T2, where the 
free energy of its solid is the same as that of the liquid, as shown 
in Fig. 1.

Fig. 1 Effect of molecular symmetry on melting temperature. Free 
energy as a function of temperature for the solids of two isomers with 
different symmetry () and the liquid phase. At any given temperature 
below the melt, the difference between the line for solid species 1 and solid 
species 2, is RT ln (2/1). The less-symmetrical species 1 has a melting 
temperature T1, the more-symmetrical species 2 will not melt until its solid 
line intersects the liquid line at T2.

The above considerations can be alternatively expressed as 
follows. In order for the melting of species 1 to take place, the 
following condition is necessary:

                                        GL(T1) = Gs
1(T1)                                   (6)

since the same criterion applies to the melting of the other isomer, 
species 2 will not melt until it reaches a temperature, T2, where the 
free energy of its solid phase is the same as that of the liquid, i.e., 
when

                                        GL(T2) = Gs
2(T2)                                   (7)

Eqns. (6) and (7) describe the solid–liquid crossing points, one 
for each isomer, shown in Fig. 1. The figure can be interpreted as 
depicting the change in melting temperature brought about by a 
hypothetical change in molecular symmetry. The effect of molecu-
lar symmetry is to produce changes in melting temperature (i.e., 
from T1 to T2) that can be, and frequently are, quite significant. It 
is important to bear in mind (as stated above) that even though the 
residual entropy due to the symmetry of a molecule has a constant 
(temperature independent) value, its effect on free energy increases 
in direct proportion with temperature. This fact has important 
ramifications. As discussed below, it is precisely because of its 
relationship with free energy, that the constant residual entropy 
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By looking at the last two expressions above, it becomes appar-
ent that even though molecular symmetry has an effect on both the 
enthalpy and entropy of melting, the nature or direction of the effect 
is not the same for the two quantities. The second term on the right 
hand side of eqn. (14) is positive, hence the enthalpy of melting 
of the more symmetric species will be greater than that of the less 
symmetrical one. In contrast, for the entropy of melting, the effect 
of molecular symmetry comes in the form of two counteracting 
effects as seen in eqn. (15). Increased molecular symmetry has a 
direct negative effect on the entropy of melting represented by the 
term −R ln 2. This term has already been introduced for the pre-
diction of entropy of melting by Yalkowsky et al.7 and by Dannen-
felser and Yalkowsky.8 The last term in eqn. (15) carries an indirect 
and positive effect of molecular symmetry on the entropy of melt-
ing. This particular term is imposed by the condition of equilibrium 
melting. Since the last two terms on the right hand side of eqn. (15) 
have opposite signs, the magnitude of Sm2 could move in either 
direction of Sm1, depending on the balance between the (indirect) 
positive and (direct) negative effects. Gavezzotti1 has found that the 
effect of molecular symmetry on melting is one of an essentially 
enthalpic nature. Based on eqns. (14) and (15), a similar assessment 
can be made by stating that the enthalpic effect is always present 
in the same (positive) direction, whereas the entropic one, which 
can go in either (positive or negative) direction, may or may not be 
observed, depending on the case. This explains why in some cases 
the entropy of melting of the more symmetrical molecule is greater 
than that of the less symmetrical one, whereas in other cases the 
opposite is true.9

Effect of molecular symmetry on solubility

The expression for the ideal solubility of crystalline substances is 
given by:4

ln
( )

X
S T T

RT RT
C T

R

C

T
Tp

T

T
p

T

T

1
1 1 11 1

=−
−

+ −∫ ∫∆
∆

∆
m1 d d

                                                                                                   (16)

where X1 is the ideal mole fraction solubility of species 1 and T is 
the absolute temperature of the measurement. The ideal solubility 
is a property of the solute alone, i.e., completely independent of the 
solvent, and represents the parameter of choice for investigating 
the limit that molecular symmetry can have on solubility. Eqn. (16) 
is a general expression that applies to any crystalline substance, 
thus for species 2:

ln
( )

X
S T T

RT RT
C T

R

C

T
Tp

T

T
p

T

T

2
2 2 1 12 2

=−
−

+ −∫ ∫∆
∆

∆
m d d

                                                                                                   (17)

The difference between eqns. (16) and (17) is therefore a mea-
sure of the effect of molecular symmetry on solubility. Substituting 
eqn. (15) into eqn. (17), followed in turn by subtraction of the 
resulting expression from eqn. (16), after some rearrangement 
gives:

ln
( ) ( )

ln
X

X

S T T

RT

T T

T

RT
C T

T

RT

C

T
Tp

T

T
p

1

2

1 2 1 2
2

21

1

2

=−
−

+
−

−

+∫

∆

∆
∆

m

d d

σ

TT

T

1

2

∫                                                                                                   (18)

Since eqn. (18) results from the difference of two ideal solubility 
expressions, it is not surprising that the expression is very similar 
in form. Note that the second term on the right hand side of eqn. 
(18), which corresponds to the direct contribution of molecular 
symmetry on solubility, has the effect of increasing the ratio of 
solubilities and has a multiplying term that is always positive. The 
effect of molecular symmetry on solubility is, in addition, more than 
proportional, since T2 will increase with an increase in 2. The first 

two terms on the right hand side of eqn. (18) can be expected to be 
the most significant ones. It is common practice in ideal solubility 
calculations to neglect the terms involving the Cp term. This term 
is often considered small compared to the entropy of melting. In 
addition, the two terms involving Cp in eqns. (16) and (17) tend 
to cancel each other, since they appear with opposite signs. This 
type of simplification is generally accepted as one that introduces 
small errors.4 However, it is important to point out that, as discussed 
below, the heat capacity terms cannot be as readily neglected when 
relating the enthalpy or entropy of melting of one ideal isomer to 
another.

Relationship between the melting temperatures

Eqns. (14) and (15) relate the enthalpies and entropies of melting, 
respectively, for two structural isomers with different symmetry. In 
order to find the relationship between the two melting temperatures, 
consider the following relationships:

                                         Hm2 = T2Sm2                                (19a)

                                         Hm1 = T1Sm1                                (19b)

substituting eqns. (14) and (15) on the left and right hand sides, 
respectively, of eqn. (19a), followed in turn by substitution of 
eqn. (19b) into the resulting expression, after some rearrangement 
gives:

∆
∆

∆C T T
C

T
T S T T RTp

T

T
p

T

T

d d lnm− = − −∫ ∫2 1 2 1 2 2
1

2

1

2

( ) σ       (20)

There is no simple analytical solution for either temperature in 
the equation above. This is true even if the term Cp were to be 
treated as a constant independent of temperature, which it is not. 
However, something of significance becomes immediately apparent 
from eqn. (20), namely, the fact that the overall magnitude of the 
effect of molecular symmetry on melting temperature is of the 
same magnitude as the combined contribution of the Cp terms. 
If the magnitude of Cp is assumed negligibly small in eqn. (20), 
the result

                                 Sm1(T2 − T1) = RT2ln 2                          (21)

which has a simple solution for either temperature, can be read-
ily shown to correspond, exactly, to the expression used by Wei.5 
However, it should be pointed out that Wei’s expression was derived 
from the explicit assumptions:

                                          Hm2 = Hm1                                 (22a)

and

                                   Sm2 = Sm1 − R ln 2                          (22b)

Therefore, although it is possible for eqn. (20) to equal zero, the 
result (eqn. (21)) is effectively restricted to a very specific set of 
mutually consistent values for the enthalpy and entropy of melting. 
Neglecting the Cp term as negligibly small corresponds to doing 
the same thing to the overall effect of molecular symmetry on 
melting for a vast number of instances, i.e., it corresponds to 
excluding all systems where Hm2 > Hm1 and/or Sm2 ≥ Sm1. 
There is no a priori reason for simplifying eqn. (20) by assigning a 
negligibly small magnitude to Cp.

Discussion
Symmetry effects on the entropy of melting include the residual en-
tropy term of eqn. (3), as discussed by Yalkowsky and coworkers.7,8 
This residual entropy, being a direct contribution of the molecular 
structure, persists all the way to absolute zero. The third law of 
thermodynamics states that at absolute zero, all perfect crystalline 
materials must have the same entropy (assigned a value of zero 
after Planck), and an empirical observation is that compounds with 
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symmetrical structures behave as third law violators.13 From the 
above considerations, one is compelled to view molecular symme-
try, or its effect, as a most primordial type of crystal imperfection.

The treatment presented in the preceding section relies on third 
law quantities to show in which fashion molecular symmetry 
affects the entropy and enthalpy of melting. The residual entropy 
originating from molecular symmetry directly decreases the entropy 
of melting for symmetrical compounds. However, the condition of 
equilibrium melting imposes additional heat capacity terms on the 
expressions for the enthalpy and entropy of melting (eqns. (14) 
and (15)). The heat capacity integrals in these two expressions, 
although indirect, are each quantitative effects of molecular 
symmetry too. If molecular symmetry has the effect of shifting 
the melting temperature to a different value, the differences in 
enthalpy and entropy between the solid and liquid phases cannot be 
independent of where the new melting temperature value happens 
to be. However, it is the difference in free energy between solid 
and liquid phases that must be zero when melting occurs. The 
shift in the (equilibrium) melting temperature, must change the 
other two quantities of melting, such that the free energy change 
upon melting does not. In a strict sense, the Cp integrals on eqns. 
(14) and (15) become zero in the trivial case where T1 = T2, given 
that the Cp term itself, as small as it may be, is not zero up to the 
melting temperature. In practice, one can consider that eqns. (22a) 
and (22b) are applicable approximations when the difference 
in melting temperature for the two isomers is rather small. Put 
another way, the additional effect of symmetry quantified by the 
heat capacity integrals on both the enthalpy (eqn. (14)) and entropy 
(eqn. (15)) of melting, is no more than a direct result of the fact that 
the (equilibrium) melting events of the two isomers do not occur 
at the same temperature. Eqns. (22a) and (22b) correspond to the 
hypothetical quantities of melting for species 2 at T1, i.e., Hm2(T1) 
and Sm2(T1), respectively.

The system under consideration here is an idealised one, namely, 
a system in which going from molecular species 2 to species 1 
involves no change other than molecular symmetry and its natural 
consequences. Wei5 likened this type of system to one in which a 
homomorphic molecule can be desymmetrised, as would be the 
case in an isotopic substitution. The expressions obtained in the 
present treatment rest on the assumption that molecular symmetry 
does not change heat capacity for the solid nor the liquid (eqns. 
(2b) and (2c)), as well as on similar zero point energy for the two 
isomers. Different symmetry in isomers results in different moments 
of inertia. Consequently, the assumption Cp

L
1 ≈ Cp

L
2 can only be an 

approximation, since the contributions of molecular rotations to 
heat capacity in the liquid are themselves affected by molecular 
symmetry. However, available data on the heat capacities (solid and 
liquid) for isomeric systems such as anthracene-phenanthrene10 and 
xylene14–16 isomers suggest that eqns. (2b) and (2c) represent reason-
able assumptions. The assumption of equal zero point energy for 
ideal isomers is a more restrictive one. The packing of molecules in 
a crystal is mostly driven by the molecular geometry, and molecules 
tend to form close packing arrangements in organic crystals.11 In the 
case of disubstituted benzenes for example, the crystal of the more 
symmetrical (higher melting) para-isomer, usually exhibits more 
efficient molecular packing than the less symmetrical ortho- and 
meta-isomers.1,9 However, ortho- and meta-isomers, which have 
the same symmetry but different shape, often have different melting 
temperatures. Such differences can be attributed, at least in part, to 
different lattice energies in their corresponding crystals. The rela-
tively small decrease in lattice energy (2–3 kJ mol−1) on going from 
the 1,4-isomer to the 1,2- and 1,3-isomers can lead to an appreciable 
difference in decrease in melting temperature.9 It should also be 
mentioned that in the analysis presented here, it is also implicitly 
assumed that the zero point vibrational entropy is the same for ideal 
isomers. Differences in vibrational entropy (Svib) between isomers 
will have an effect of magnitude equal to −TSvib on the free energy of 
the corresponding solid phase. The isomer with the stronger crystal 
packing could also have the lower vibrational entropy, this would 
result in counteracting effects toward the ranking in free energy 
between the two isomers.9

It would be useful to see to what extent a system of real isomers 
resembles an ideal one. Fig. 2 shows heat capacity data14–16 for the 
three structural isomers of xylene: ortho, meta and para. Fig. 2A 
shows that the heat capacities of the three xylene isomers are similar 
although not exactly the same in terms of their observed profiles. 
The heat capacity of both the ortho- and meta-isomers show signs 
of premelting, whereas the para-isomer does not. The ortho-isomer 
in particular exhibits more significant differences with respect to the 
other two isomers in both the solid and liquid phases. Fig. 2B shows 
part of the same data in a narrowed temperature range, such that heat 
capacity values of solid and liquid can be approximated by straight 
lines (excluding premelting) around the melting region. The figure 
shows that the heat capacities for the meta- and para-isomers are 
somewhat closer to each other, close enough to allow the use of one 
common line that correlates with both. In contrast, the ortho-isomer 
shows heat capacity values that are shifted from the common line of 
the meta- and para-isomers. The difference in heat capacity for the 
ortho-isomer relative to the other two is even more significant for 
the liquid than for the solid, as seen in the figure.

Fig. 2 Heat capacity of xylenes. (A) Heat capacity data of all three 
isomers of xylene in the solid and liquid states, as a function of temperature. 
(B) Heat capacity data for the three isomers of xylene in the temperature 
range surrounding the melting region. The solid lines correspond to the 
common linear fits for the combined data from the meta and para isomers 
in that region (premelting excluded). Dashed lines are the fit of the data for 
the ortho isomer. Data from Chirico et al. (Refs. 14–16).

Fitting the lines for the temperature range shown in Fig. 2B, 
such that one line describes a common heat capacity curve for the 
solids of the meta- and para-isomers (as in eqn. (2b)), and another 
line describes a common heat capacity curve for the liquids of the 
same isomers (as in eqn. (2c)), would make it possible to explore 
the applicability of the equations relating the quantities of melting. 
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Using this approach, the estimated value for the entropy of melting 
of p-xylene (eqn. (15)) is 56.3 J mol−1 K−1, comparable to the experi-
mentally observed value of 59.7 J mol−1 K−1. In this example, eqn. 
(15) correctly predicts a higher value for the entropy of melting of 
the more symmetrical isomer, in accordance with the experimental 
observation. In the case of the enthalpy of melting, the estimate 
from eqn. (14) is in the order of 14 kJ mol−1. Compared to the 
experimentally obtained value of 17 kJ mol−1, the prediction for the 
enthalpy of melting, although an underestimate, is also in agreement 
with the experimental observation of higher value for the more sym-
metric isomer.

It should be pointed out that the analysis presented here does 
not account for the effects that solid–solid phase transitions have 
on the observed quantities of melting. The data in Fig. 2 show 
that the xylenes do not undergo solid–solid phase transitions. This 
situation, however, is not always the case. Consider for example 
the structural isomers anthracene and phenanthrene, also listed on 
Table 1. Using the linear functions published by Allen et al.17 for 
the heat capacity of the solid (from anthracene) and the liquid (from 
phenanthrene) it is possible to estimate the quantities of melting 
for these two isomers as done above for the xylenes. In this case, 
however, eqn. (15) predicts the entropy of melting of anthracene to 
be 44 J mol−1 K−1, which happens to be the same as the experimental 
entropy of melting of phenanthrene, and an underestimate for the 
actual value for anthracene of 60 J mol−1 K−1. The reason for 
these results is that phenanthrene undergoes a solid-solid phase 
transition at 71 °C.21 Therefore, eqns. (14) and (15) would need 
to be modified accordingly, in order to account for the effect of a 
solid–solid transition on the enthalpy and entropy of melting. It is 
interesting to note that for this system of isomers, eqn. (18) predicts 
the solubility of phenanthrene to be about 15 times greater than that 
of anthracene. This is a reasonable estimate, based on the data of 
Mishra and Yalkowsky,22 supporting the idea discussed above, that 
solubility estimations lend themselves to certain simplifications.

Solubility is of special relevance in analyses like the present 
one. It is a readily measured equilibrium value that quantifies the 
difference in free energy between a (crystalline) solid phase and 
its corresponding liquid at a given temperature. Solubility values 
incorporate the effects of molecular symmetry on the quantities 
(enthalpy, entropy and temperature) of melting of structural isomers, 
including the important restrictions from equilibrium melting, as 
discussed above. In the case of true ideal isomers, namely, if all 
assumptions of the preceding analysis were exactly applicable, then, 
by carrying on with the same analysis we obtain:

                                 ln
( )

ln
X

X

T T

T
1

2

2 2

1

2
=

− σ
σ

                         (23)

The expression above simply restates that, at a given tempera-
ture T, the difference in free energy (logarithm of solubility ratio) 
between ideal isomers of different symmetry is exclusively the 
result of their different residual entropy due to their respective 
symmetry. As discussed above, the condition of equilibrium melt-
ing relates the quantities of melting of the two isomers, so that the 
subtraction of two non-independent solubility expressions, leaves 
one of the two melting temperatures as the only degree of freedom. 
Eqn. (23) is the limiting case for the relationship between the 
solubilities of ideal isomers. For each assumption of the preceding 
analysis that is not exactly applicable, there will be a corresponding 
deviation from eqn. (23). Each of those deviations alters the differ-
ence in free energy between isomers from its ideal value of −TSr, 
making in turn a contribution toward the heat capacity integrals 
present in eqn. (18) but absent in eqn. (23). Comparison between 
experimentally obtained solubility ratios and those obtained from 
eqn. (23), is a quantitative measure of how close a system of struc-
tural isomers resembles an ideal system, as defined by the assump-
tions discussed above.

Same symmetry, different melting, ortho- and meta-isomers

The melting parameters for the three xylene isomers are listed 
on Table 1. For all three parameters of melting, i.e., temperature, 

enthalpy and entropy, the order is para > ortho > meta, which is 
a rather common occurrence.1,9 Even though the ortho- and meta-
isomers have the same molecular symmetry, higher melting for 
ortho-disubstituted benzenes is not uncommon, and such a situation 
indicates that there must be yet another factor of common occur-
rence, not covered by the preceding analysis, relating the melting 
parameters of meta- and ortho-isomers. One remaining question is 
whether such a factor is still related to symmetry or not.

Gavezzotti1 has interpreted the usually higher melting tempera-
ture of ortho-disubstituted benzenes over their meta-counterparts 
as confirmation of a compact naphthalene-like pattern adoptable by 
ortho-isomers in the solid phase. This corresponds to differences 
in crystal packing energy between isomers, as discussed above.9 It 
is possible that a different molecular arrangement adopted by each 
isomer in the solid phase results in different zero point energy for 
each one (see text below eqn. (10)). If the assumption of equal zero 
point energy for different isomers is removed from the preceding 
analysis, a procedure similar to that leading to eqn. (14) gives:

                      ∆ ∆ ∆ ∆H H H C Tp
T

T

m m d2 1
0

1

2

= − +∫              (14′)

where H 0 = H  02 − H  01, with H  01 and H  02 denoting the zero point 
energy of isomers 1 and 2, respectively. The term H0 above is 
the difference in zero point energy between the two isomers, which 
accounts for the stronger molecular packing in the higher melting 
crystal. The terms H  01 and H  02 are both negative quantities that can 
be obtained from quantum chemical calculations.12 Eqn. (14′) 
accounts for an additional enthalpic contribution resulting from 
the higher crystal packing energy of species 2 (i.e., H 0 = H  02 − 
H  01 < 0). In an analogous manner, if by virtue of different molecular 
arrangements in their corresponding solid phases, the ortho- and 
meta-isomers have different zero point energy, it would be possible 
to apply eqn. (14′). In such a case, the subscripts 1 and 2 in eqn. (14′) 
would be replaced by subscripts meta and ortho, respectively (i.e., 
H 0 = H  0ortho − H  0meta < 0), and the condition of equilibrium melting 
would, in turn, dictate that Tortho > Tmeta. The considerations leading 
to, and implications of, eqn. (14′), provide a feasible explanation, in 
terms of lattice energy, as to why isomers of equal symmetry could 
exhibit different melting temperatures.

One important and interesting question is whether there is a direct 
entropic effect for the difference in melting temperature between 
ortho- and meta-isomers. Eqn. (14′) does not explicitly account 
for the fact that in addition to higher enthalpy and temperature 
of melting, ortho-isomers often, but very importantly, not always, 
exhibit also higher entropy of melting than their meta-counterparts. 
Since  is the same for both ortho- and meta-isomers, if symmetry is 
still to play a role in the difference between their melting parameters, 
such an effect would need to be of a supramolecular nature. This 
sort of proposition is based on Gavezzotti’s1 observations regarding 
ortho- and meta-disubstituted benzenes, observations that can be 
interpreted as pointing in precisely that direction. Gavezzotti1 has 
noted that the ortho arrangement can lead to the formation of stable 
intermolecular dimers in the solid phase, and that such arrangements 
present the effects of some sort of pseudosymmetry with regard to 
their usually higher melting temperature. Fig. 3 shows an example 
of the type of assemblies proposed by Gavezzotti.1 The molecules 
in the figure have  = 1. Consider that the two-molecule assembly 
is sufficiently stable as to allow for it to be rigidly rotated as one 
unit (as a quasi-molecule). In such a situation, the supramolecular 
assembly in Fig. 3 would have a rotational symmetry number of 2. 
If this type of supramolecular symmetry (or pseudosymmetry) is 
present, its contribution to the entropy of the solid will be given by 
an expression of form:

                                         S
R

nR = ln( )*Σ2
                                 (24)

where SR is the residual configurational entropy contribution 
resulting from the symmetry of the supramolecular assembly, n 
is the number of molecules forming the assembly, and *

2 denotes 
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its rotational symmetry number. It is pertinent to clarify that the 
contribution of supramolecular symmetry to entropy does not make 
it a requirement for a molecular assembly to actually rotate as a rigid 
quasi-molecule.

Concluding remarks
Symmetry is a molecular attribute whose effects find their way 
manifested at the bulk property level, up to a certain point. The 
melting point, that is. Symmetry effects are part of the bulk properties 
of the solid up to, and including its transition into the liquid phase, 
i.e., the point at which such effects become energetically spent. 
The analysis presented here, although a simplified one, provides a 
conceptual connection among the quantities of melting as they are 
affected by molecular symmetry. It helps explain why a symmetric 
molecule, which has higher entropy (closer to that of the liquid), 
could also, as is often the case, undergo a greater entropy gain 
upon melting, than a non- (less) symmetrical one. The analysis also 
shows that due to the condition of equilibrium melting, molecular 
symmetry has additional, non-direct effects on both the enthalpy and 
entropy of melting. Entropy of melting is a determining factor on 
the ideal solubility of organic compounds, it follows that molecular 
symmetry should have an explicit effect on solubility.

The existence of structural isomers with equal molecular 
symmetry but different melting properties is evidence that 
molecular symmetry alone does not account for all the differences 
in melting parameters between structural isomers. Differences in 
packing energy between isomers of equal symmetry can explain 
the higher melting of one over the other. However, the fact that the 
difference in melting parameters between ortho- and meta-disub-
stituted benzenes is less a function of their chemical nature than of 
the arrangement of their molecules in space,1 leaves room for the 
possibility of another geometrical factor, not previously considered, 
at play. These considerations lead to proposing the possibility of 
a supramolecular symmetry effect like that of eqn. (24). It should 
be noted that the idea of supramolecular symmetry is not unprec-
edented, since it is analogous to the concept of non-crystallographic 
symmetry (a localised, rotational symmetry involving assemblies of 
molecules) originally introduced by Rossmann23 for biomolecules. 
More recently,24 high symmetry crystal supramolecularity has been 
reported. Nevertheless, the effect of supramolecular symmetry 
on melting awaits experimental confirmation or disproving, and 
with basis on the estimations presented above, one can say that 
structural isomers may not provide the most suitable system for 
testing the hypothesis embodied in eqn. (24). For this purpose, 
study of the melting of certain types of polymorphic systems may 
prove to be more suitable systems. In these cases, eqn. (2c) will 
be an exact property of the system instead of an assumption, and 
the applicability of eqn. (2b) can be assessed, and corrected if 
necessary, up front. The type of analysis used here for the melting 
of structural isomers can be also useful in studying the melting of 
racemic mixtures, where the apparent entropy of mixing of optical 
isomers in the liquid state is sometimes non ideal, even negative.25 
In any case, however, it is unlikely that considerations based on 
equilibrium thermodynamics alone will be able to accomplish the 
task. Instead, a combination of molecular modelling and thermal 
measurements will be necessary.
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Again, as was the case with eqn. (15), the symmetry term *
2 has a 

direct contribution to the entropy of melting plus the indirect heat 
capacity effect. If the subscripts 1 and 2 in eqn. (15′) are replaced 
with meta and ortho, respectively, the first term inside the brackets 
vanishes, leaving the direct entropy effect due to the supramolecular 
symmetry term. Fig. 4 illustrates the effect of different packing 
energy on the melting temperature for two isomers with equal 
molecular symmetry (eqn. (14′)). The figure also illustrates the 
effect that different supramolecular symmetry (eqn. (15′)) could 
have on the melting temperature of two isomers of equal molecular 
symmetry.
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